Головная страница ИПМ Библиотеки, издания  •  Поиск публикаций  English 
Публикация

Препринт ИПМ № 74, Москва, 2019 г.
Авторы: Бахвалов П.А., Сурначёв М.Д.
Линейные схемы с несколькими степенями свободы для многомерного уравнения переноса
Аннотация:
Рассматриваются линейные разностные схемы с несколькими степенями свободы на однуячейку для одномерного уравнения переноса. Численная ошибка решения таких схем обладет ошибкой O(hp + thq), причём p совпадает с порядком аппроксимации или превосходит его на единицу, а q>=p. Доказывается, что существует такое отображение гладких функций на сеточное пространство, отличающегося от обычного (например, L2-проекции) на величину порядка hp, в смысле которого схема будет обладать q-м порядком аппроксимации. В отличие от одномерного случая, локальное отображение с требуемыми свойствами может не существовать. Приводятся достаточные условия его существования.
Ключевые слова:
аппроксимация и точность, суперсходимость
Язык публикации: русский,  страниц: 44
Направление исследований:
Математические вопросы и теория численных методов
Полный текст на русском языке:
Экспорт ссылки на публикацию в формате:   RIS    BibTeX
Статистика просмотров (обновляется раз в сутки):
за последние 30 дней — 7 (+1), всего с 01.09.2019 — 169
Сведения об авторах:
  • Бахвалов Павел Алексеевич,  orcid.org/0000-0003-3416-8277ИПМ им. М.В. Келдыша РАН
  • Сурначёв Михаил Дмитриевич,  orcid.org/0000-0003-4071-5097ИПМ им. М.В. Келдыша РАН