KIAM Main page Web Library  •  Publication Searh  Русский 
Publication

KIAM Preprint № 64, Moscow, 2023
Authors: Ershov S.V., Frolov V.A., Nikolaev A.A., Voloboy A.G.
Langevin dynamics in stochastic ray tracing: phase space selection and limitations for path variation
Abstract:
The main computationally extensive task of realistic computer graphics is the calculation of global illumination. The work investigates the speed of the convergence of lighting simulation using Monte Carlo integration based on the Langevin equation. The paper presents the second part of the work, which analyses the choice of the phase space, restrictions on the possible variations of light path, and the calculation of the probability density of the transition proposal. It is shown how these aspects affect convergence.
Keywords:
global illumination, stochastic ray tracing, Markov chain, Langevin equation
Publication language: russian,  pages: 15
Research direction:
Mathematical modelling in actual problems of science and technics
Russian source text:
Export link to publication in format:   RIS    BibTeX
View statistics (updated once a day)
over the last 30 days — 12 (+4), total hit from 14.12.2023 — 87
About authors:
  • Ershov Sergey Valentinovich,  orcid.org/0000-0002-5493-1076KIAM RAS
  • Frolov Vladimir Alexandrovich,  orcid.org/0000-0001-8829-9884KIAM RAS
  • Nikolaev Alexander Alexeevich,  orcid.org/0009-0005-3840-7038Lomonosov Moscow State University
  • Voloboy Alexey Gennadievich,  orcid.org/0000-0003-1252-8294KIAM RAS