KIAM Main page Web Library  •  Publication Searh  Русский 
Publication

KIAM Preprint № 21, Moscow, 2023
Authors: Kalmetev R.S.
Approximate solution of multidimensional Kolmogorov equation using Feynman-Chernoff iterations
Abstract:
In this paper we propose a new algorithm for the numerical approximation of solutions to the multidimensional Kolmogorov equation, based on the averaging of Feynman-Chernoff iterations for random operator-valued functions. In the case when the values of operator-valued functions belong to the representation of some finite-dimensional Lie group, the proposed algorithm has a lower computational complexity compared to the standard Monte Carlo algorithm that uses the Feynman-Kac formula. In particular, we study the case of a group of affine transformations of a Euclidean space. For the considered algorithms we also present the results of numerical calculations.
Keywords:
Feynman-Chernoff iterations, operator-valued random process, Feynman-Kac formula, Monte Carlo method, Kolmogorov equation
Publication language: russian,  pages: 15
Research direction:
Mathematical modelling in actual problems of science and technics
Russian source text:
Export link to publication in format:   RIS    BibTeX
View statistics (updated once a day)
over the last 30 days — 16 (+5), total hit from 12.04.2023 — 253
About authors:
  • Kalmetev Rustem Shainurovich,  orcid.org/0000-0002-4972-1816KIAM RAS