KIAM Main page Web Library  •  Publication Searh  Русский 

KIAM Preprint № 90, Moscow, 2021
Authors: Mazhukin V.I., Shapranov A.V., Koroleva O.N., Mazhukin A.V.
Atomistic modeling of the propagation of the melting/crystallization front for metals based on the generalization of the modified transition state theory
Based on the modification of the well-known kinetic model with the Wilson-Frenkel diffusion constraint, a new kinetic model of the propagation velocity of the solid/liquid interface in various metal crystals (fcc - Al, Cu) and (bcc - Fe) has been developed in a wide temperature range, including the range of maximum permissible overheating/subcooling values. Molecular dynamics modeling of melting/crystallization processes of Al, Cu and Fe under deep overheating/overcooling conditions has been performed using 3 interaction potentials of the EAM family. By comparing the simulation results with the data of the modified kinetic model, the interface speed response function in the region of the maximum permissible values of overheating/overcooling in metals is constructed. The temperature dependence of the velocity of the interface is diffusion-limited and is described by the same equation for each metal in the entire temperature range.
solid/liquid interface, velocity of the interface, overheating/overcooling, kinetic model, atomistic modeling
Publication language: russian,  pages: 20
Research direction:
Mathematical modelling in actual problems of science and technics
Russian source text:
Export link to publication in format:   RIS    BibTeX
View statistics (updated once a day)
over the last 30 days — 7 (+5), total hit from 20.12.2021 — 77
About authors:
  • Mazhukin Vladimir Ivanovich, RAS
  • Shapranov Alexander Viktorovich, RAS
  • Koroleva Olga Nikolaevna, RAS
  • Mazhukin Alexander Vladimirovich, RAS