KIAM Main page Web Library  •  Publication Searh  Русский 
Publication

KIAM Preprint № 172, Moscow, 2018
Authors: Zhukov V. T., Novikova N.D., Feodoritova O. B.
Chebyshev iterations based on adaptive update of the lower bound of the spectrum of the matrix
Abstract:
For numerical solution of symmetric systems of linear equations with a positive-definite matrix an adaptive Chebyshev iterative method is constructed. In this method, the unknown lower bound of the spectrum of the matrix is refined in cycle of the outer iterations; the upper bound is taken by the Gershgorin theorem. Such procedure ensures the convergence of the iterations with computational costs close to the costs of the Chebyshev method, which uses the exact boundaries of the spectrum of the matrix.
Keywords:
systems of linear equations, Chebyshev iteration method, adaptive procedures
Publication language: russian,  pages: 32
Research direction:
Mathematical problems and theory of numerical methods
Russian source text:
Export link to publication in format:   RIS    BibTeX
View statistics (updated once a day)
over the last 30 days — 22 (+8), total hit from 01.09.2019 — 1267
About authors:
  • Zhukov Victor Timofeevich,  zhukov@kiam.ru;vic.zhukov@gmail.comorcid.org/0000-0002-0649-1547KIAM RAS
  • Novikova Natalia Dmitrievna,  nn@kiam.ruorcid.org/0000-0002-3896-2956KIAM RAS
  • Feodoritova Olga Borisovna,  feodor@kiam.ru;olga.feodoritova@gmail.comorcid.org/0000-0002-2792-9376KIAM RAS