KIAM Main page Web Library  •  Publication Searh  Русский 
Publication

KIAM Preprint № 98, Moscow, 1997
Authors: Galaktionov V. A., Posashkov S.A.
Maximal Sign-Invariants and New Exact Solutions of Quasilinear Parabolic Equations with Gradient Diffusivity.
Abstract:
We consider quasilinear parabolic equations with gradient-like diffusivity ut=div(|∇u|σu)+f(u),   x ∋ RN, t > 0, when σ ≠-1 is a fixed constant and f(u) is a given smooth function. We also study quasilinear parabolic equations with a gradient-dependent coefficient ut = h(|∇u|Δu + f(u), with a smooth function h(p). For both classes of equations we derive first-order sign-invariants, i.e. first-order operators preserving their signs on the evolution orbits {u(•, t), t>0}. We give a complete description of (maximal) sign-invariants of prescribed structures. As a consequence, we construct new exact solutions on some quasilinear equations.
Publication language: russian
Research direction:
Mathematical problems and theory of numerical methods
Export link to publication in format:   RIS    BibTeX
About authors:
  • Galaktionov Vladimir Alexandrovich,  vlgal@gin.keldysh.ruorcid.org/0000-0001-6460-7539KIAM RAS
  • Posashkov S. A.,  KIAM RAS