Article collection "Mathematical Problems of Cybernetics" №15, Moscow, 2006
Authors:Kochergin V.V.
On the complexity of computation of three monomials in three variables
Abstract:
Assume given the system of 3 monomials over 3 indeterminates f1 = xa11 ya12 za13, f2 = xa21 ya22 za23, f3 = xa31 ya32 za33 , which is described by a nonnegative integer matrix A = (aij) of size 3 × 3 without zero rows. By l(f1, f2, f3) (another notation l(A)) we denote the minimal number of multiplications for computation of the system of monomials {f1, f2, f3} given the indeterminates x, y, z (repeated use of the results of intermediate computation is permitted). The main result of the paper is the asymptotic formula
l (xa11 ya12 za13, xa21 ya22 za23, xa31 ya32 za33 ) = (1 + o(1)) log2 D(A), D(A) → ∞, where D(A) is the maximum of the absolute values of the minors of A, where the maximum is taken over all minors.
Keywords:
vector additive chain, evaluations of monomials, circuit complexity, complexity of matrix
Kochergin Vadim Vasil'evich, , Механико-математический факультет МГУ, Кафедра дискретной математики, Институт теоретических проблем микромира им. Н. Н. Боголюбова МГУ